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Abstract

This paper is to introduce circuit, bond, flow, and tension spaces and lattices for signed graphs, and to
study the relations among these spaces and lattices. The key ingredient is to introduce circuit and bond
characteristic vectors so that the desired spaces and lattices can be defined such that their dimensions and
ranks match well to that of matroids of signed graphs. The main results can be stated as follows: (1) the
classification of minimal directed cuts; (2) the circuit space (lattice) equals flow space (lattice), and the
bond space equals the tension space; (3) the bond lattice equals the row lattice of the incidence matrix, and
the reduced bond lattice equals the tension lattice; and (4) for unbalanced signed graphs, the module of
potentials is isomorphic to the module of tensions if the coefficient ring is 2-torsion free.
© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

A signed graph is a graph (loops and multiple edges are allowed) whose edges are given either
a positive sign +1 or a negative sign —1, but not both. An ordinary graph can be considered as
a signed graph whose edges are all given positive sign. Guided by matroid theory, Zaslavsky
[10,11] generalized the notions of circuit, bond, orientation of graphs to signed graphs, and the
notions of directed circuit and bond of directed graphs to oriented signed graphs. It is well known
in graph theory that the cycle and bond spaces are orthogonal complements each other; see,
for example, the books of Bollabas [4, Theorem 9, p. 43], Bondy and Murty [5, Chapter 12],
and Godsil and Royle [7, Chapter 14]. Moreover, the lattices of such spaces are integral spans
of circuit and bond characteristic vectors, respectively. It should be interesting and valuable to
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extend these fundamental results on graphs to signed graphs, for signed graphs appear naturally
in many other fields, ranging from theory to application. This extension seems to be not very
difficult, for most related concepts already exist in literature; however, it is by no means obvious.
Searching the literature on the subject carefully, we found no references to such desired spaces
and lattices and the relations holding among them, to the best of our knowledge. The present
paper is to introduce circuit and bond spaces and lattices for signed graphs, and to extend the
fundamental theorems on such spaces and lattices for ordinary graphs to signed graphs.

We choose definitions of circuit, bond, and orientation as given by Zaslavsky [10,11] for
signed graphs. Further to these known concepts, we first introduce the notions of cut, directed
cut, and minimal directed cut; bond is another name for minimal cut. Section 2 is to clarify the
relation holding among these concepts; and to characterize minimal directed cuts in explicit
description. Next, we define indicator functions I¢c and Ip for circuits C and bonds B by
modifying the ordinary characteristic functions with weight. Then we define a coupling [e1, €3]
for any pair of orientations 1 and &> on signed subgraphs. For an oriented signed graph (X, ¢),
the coupling enables us to define characteristic vectors [ec, €]lc and [ep, €]lp for directed
circuits (C, ec) and directed bonds (B, ep). The integral spans of such vectors are then called
the circuit lattice Z(X, ¢; Z) and bond lattice B(XY, ¢; Z), respectively. Lastly, the flow lattice
F (X, e; Z) and tension lattice T (X, ¢; Z) are introduced for signed graphs, similar to homology
and cohomology groups of graphs with integral coefficients. The flow space F(X, e; R) and
tension space T (X, ¢; R) are defined analogously with real coefficients.

Let X' be a signed graph with an orientation ¢. The main results of the paper can be stated as
follows:

1. The characterization of minimal directed cuts;

2. Z(XM,e;7Z) = F(X,¢e;Z) and B(Z, e, 2y =T(X, e, 7),

3. F(Y,&;R) and T(X, &; R) are orthogonal complements in RE(E);
4. 2B(X,e;7Z) € B(X,¢e;7Z) = RowM,

5. RO o T(X, e R) ~ RV,

where V(X) and E(JX) are vertex and edge sets of X respectively, b()) is the number of
balanced components of X', M is the incidence matrix of (X, ¢), E(Z , &; 7)) is the reduced bond
lattice, and R is a commutative ring having the unity 1 and the element 2 invertible.

There are plenty of references on signed graphs; see the survey by Zaslavsky [13]. Related
to the present paper are the work of Zaslavsky [10], Bouchet [6], Khelladi [8], and the recent
work by Beck and Zaslavsky [1,2]. For further information about signed graphs, we refer to
Zaslavsky’s papers [9-12].

2. Characterization of (minimal directed) cuts

Let us recall briefly some known concepts and notations of signed graphs that we shall need
in the present paper. These concepts and notations may be found in [10], except the notion of
(minimal directed) cuts and their characterization; see Proposition 2.1 and Theorem 2.4 below.
Throughout the whole paper let ' = (V, E, o) be a signed graph, where V is the vertex set,
E is the edge set, and 0 : E — {£1} is the sign function. For a vertex subset X C V, we
denote by E(X) the set of edges whose end vertices are contained in X, and by X'(X) the signed
subgraph (X, E(X), o|g(x)). For an edge subset S C E, we denote by 2/(S) the signed subgraph
(V. S, 0ls).

A cycle of X' is a simple closed path; the sign of a cycle is the product of signs of all edges.
A cycle is said to be balanced if its sign is positive; and unbalanced otherwise. A signed



B. Chen, J. Wang / European Journal of Combinatorics 30 (2009) 263-279 265

graph is said to be balanced if its every cycle is balanced; and unbalanced otherwise. The
connected components of Y’ are partitioned into two types: balanced components and unbalanced
components. We denote by (') the number of balanced components of Y.

A circuit C of X is either a balanced cycle, said to be of Type I; or an edge set consisting
of two unbalanced cycles C1, Cy, whose vertex sets have exactly one common vertex, written
C = C1(3 and said to be of Type II; or an edge set consisting of two unbalanced cycles C1, C»,
and a simple path P (called circuit path) with at least one edge, written C = C; PC3 and said to
be of Type 111, such that V(C1) NV (C3) = ¥, and (V(C1) U V(C3)) NV (P) contains exactly the
initial and end vertices of the path P.

A cut of X is a non-empty edge subset of the form U = [X, X] U Ex, where X C V(X))
is non-empty, [X, X¢] is the set of edges between X and its complement X¢, and Ex C E(X)
is minimal to have Y'(E(X) — Ey) balanced, i.e., Y (E(X) — Ex + e) is unbalanced for any
e € Ex. A cut is said to be minimal if it does not properly contain any cut. A minimal cut is
called a bond. A bond B = [X, XU Ey is said to be of Type [ if Ex = @, and of Type II if
X =V, and of Type Il otherwise; the set Ey is called the bond core of B. Notice that a cut may
not be a disjoint union of bonds. It is clear that if X' is balanced and connected, its every cut has
the form [X, X¢]. The following proposition characterizes cuts of an unbalanced signed graph.

Proposition 2.1. Let X' be a connected unbalanced signed graph.

(@) Let U = [X, X1 U Ex be a cut. If X (X) is connected, so is X (X) — Ex.

(b) The removal of a cut increases the number of balanced components.

(¢c) Acut B=1[X,X1U Ex is a bond if and only if X (X) is connected, and every component
of X (X€) is unbalanced.

(d) An edge subset B is a bond if and only if B is minimal, in the sense that its removal
increases the number of balanced components by one, i.e., b(X — B) = b(X) + 1 and
b(X — B +e)=b(Y)foranye € B.

Proof. (a) Suppose X (X) — Ex is disconnected. Take an edge e between any two connected
components of Y (X) — Ex. Then e € Ex and Y(X) — Ex + e is still balanced. This is a
contradiction.

(b) It is trivial by definition of cut.

(c) The sufficiency is trivial. As for the necessity, let B = [X, X°]UEx beabond. If X =V,
then X' (X) = X and B = Eys; it is obvious that Y (X) is connected and every component
of Y (X¢) is unbalanced, since X is connected and X' (X¢) has no component. If X # V, we
first claim that X' (X) is connected. Suppose X'(X) is decomposed into at least two connected
components Y. Set X; = V(X;), Ex, = E(X;) N Ex, and B; = [X;, X{] U Ey,. Then B is
decomposed into a disjoint union of smaller cuts B;. This is a contradiction.

Next we claim that every component of X' (X¢) is unbalanced. Suppose X' (X¢) has at least
two components and one of them is balanced, say Xpy; then Uy = [Xo, XS] with Xo = V()
is a smaller cut that is properly contained in B; again this is a contradiction. Suppose X' (X¢)
is connected and balanced. If the edges of [X, X¢] are all positive or all negative, then U’ =
[V,OIUE Q/ with E Q, = Ex being a smaller cut; this is a contradiction. If [X, X¢] contains both
positive and negative edges, then U’ = [V, #]U E, is a cut, where E}, is the union of Ey and the
set of negative edges of [X, X¢]. The cut U’ is properly contained in B; this is a contradiction.
Thus every component of X'(X€) is unbalanced.

(d) This is contained implicitly in [11]. The necessity is trivial by Part (c). As for sufficiency,
let B be a minimal edge set of X' such that b(XY' — B) = b(X) + 1. Then all components of
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Y (E — B) are unbalanced except for exactly one balanced component 2. Set X = V (Xp) and
Ex = E(X) — E(Xp). Then B = [X, X“]U Ex, and it is a bond by Part (c). [

Let x = uv be an edge of X' with end vertices u and v (1 = v if x is a loop). We denote by
End(x) the multi-set {u, v}, i.e., End(x) = {u, v} if x is a loop. An orientation of x is a multi-set
{e(u, x), (v, x)} of two elements over the set {1}, such that

e(u,x)e(v,x) = —o(x);

we write &x = {e(u, x), €(v, x)}. Pictorially, an orientation of an edge x = uv can be considered
as two arrows assigned to x, each at its end vertices u and v, in such a way that the arrow points
away from u if e(u, x) = 1 and the arrow points towards u if e(u, x) = —1. An edge x together
with an orientation ¢, is called an oriented edge. Every edge other than a positive loop has exactly
two orientations, while a positive loop has only one orientation.

An orientation of a signed graph XY = (V, E, o) is an assignment where each edge of
X' is given an orientation. Alternatively, an orientation of X' can be considered as a function
e 1V xE — {0,%1} such that (i) e(u,x) = 0if u ¢ End(x), (ii) &e(u, x) is assigned two
opposite values if x is a positive loop with # € End(x), and (iii)

e(u,x)e(v,x) = —o(x), x=uv. 2.1

So ¢ is actually not a function, but a multi-valued function. A signed graph X’ with an orientation
¢ in the present paper may be considered a bi-directed ordinary graph of [6]; we call it an oriented
signed graph, denoted by (X, €).

Letv : V — {=£1} be a function, called a switching function. For the oriented signed graph
(XY,e) =(V, E, o, ¢), we define a sign function ¥ and an orientation " by

o’ (x) =vu)o(x)v(v), e(u,x) =ve(u,x), x=uv.

Indeed, &"(u, x)e"(v,x) = —o"(x). So &” is an orientation of the signed graph (V, E, o").
A switching from (V, E,o0,¢) to (XV,¢&") = (V, E,o",¢") by a switching function v is the
replacement of ¢ by ¢” and ¢ by ¢". Notice that switching does not change the balance of
cycles.

Let W be a walk of Y. We write W as a vertex-edge sequence:

W = uoxou X1 - - UnXplyy1,

where the edge x; is incident with vertices u; and u;. The sign of W is the product
n
o (W) = l_la(xi).
i=0

A direction of W is a function ey with values %1, defined for the pairs (u;, x;) and (4;11, X;),
such that

ew i, xi)ew Wit1, Xi) = —o (x;), ew Wi, xi—1) +ewu;, x;) = 0.

Every walk has exactly two directions. A walk W together with a direction e is called a directed
walk, denoted (W, ey ). If a directed walk (W, ew) is closed, i.e., ug = u,+1, then it is easy to
see that

—ew (ug, xp) if W is positive,

ew (Una1, Xn) = . . :
W (nt1, Xn) {sw(uo,xo) if W is negative.
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A directed closed positive walk is said to be minimal (or irreducible) if it does not properly
contain any directed closed positive sub-walk.

A direction of a circuit C is an orientation ¢ on the signed subgraph X'(C) such that every
vertex is neither a source nor a sink. A circuit C with a direction g¢ is called a directed circuit,
denoted (C, ec). We automatically extend a direction ec to V x E by setting ec (v, y) = 0 when
v and y are not incident in C. It is easy to see that a minimal directed closed positive walk can be
constructed on any directed circuit along its direction, using the edges on the circuit path twice.

Lemma 2.2. Let U = [X, X°]U Ex be a cut of 3. Then there exists a switching function v such
that v|xe =1, UUlE(X)fEX =1, anda”lEX =—1.

Proof. Since Y (X) — Ex is balanced, there exists a switching function v with v|X¢ = 1, such
that all edges of XV (X) — Ex are positive. We claim that all edges of Ex are negative in X"
Suppose one edge e € Ey is positive. Clearly, XV (X) — E'y is still balanced with E}, = Ex —{e}.
Then Ex is not minimal and U cannot be a cut. This is a contradiction. [

A direction of a cut U = [X, X“] U Ey is an orientation £y on the signed graph X'(U) such
that there exists a switching vy satisfying the following conditions:

v|xe =1, " Ex)—Ey =1, o gy = —1, e (u,x) =1,

where x = uv € U with u € X. We automatically extend ey to V' x E by setting ey (v, y) =0
if v and y are not incident in such that v € X and y € U. We call the orientation EZ,X a positive
direction of U in the signed graph YV¥. A cut U with a direction ¢y is called a directed cut,
denoted (U, ey). We say that a cut U is directed in (X, €) (or a directed cut of (X, ¢)) if (U, ¢)
is a directed cut. Lemma 2.2 shows that any cut can be equipped with a direction. A directed cut
(U, &) with U = [X, X°] U E¥ is said to be minimal if it does not properly contain any directed
cut (Uy, &) with Uy = [X1, X{]U Ex, such that U; C U and Ex, C Ex. Notice that a minimal
directed cut needs not be a directed bond, i.e., it may contain properly a cut. For example, the
oriented singed graph in Fig. 1 is a minimal directed cut, but is not a bond; it contains two bonds

{x1, y1, y2, y3, ya} and {x2, y1, ¥2, y3, ya}.

Fig. 1. A minimal directed cut that is not a bond.

Lemma 2.3. Let (U, ¢) be a directed cut, where U = [X, X1 U Ex. If (U, ¢) is a minimal
directed cut, then X (X) — Ex is connected.

Proof. Let 2y, ..., X be connected components of X' (X). Set X; = V(X;), Ex, = E(X;)NEx,
and U; = [X;, Xl.c] U Ey;. Then (U, ¢) is a disjoint union of the directed cuts (U;, ey). So, if
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(U, ¢) is minimal directed cut, then X'(X) must be connected. By Proposition 2.1(a), X (X) — Ex
is connected. [

Theorem 2.4. Let X' be a connected unbalanced signed graph. Let (U, €) be a directed cut,
where U = [X, X1 U Ex. Then (U, €) is a minimal directed cut if and only if

(1) (U, ¢) is a directed bond; or

2) X £V, X(X)— Ex is connected, 3 (X) contains at least one balanced component, and for
each such balanced component Xy of X (XC) the signed subgraph X := X (XUV (Xy))—Ex
is unbalanced.

Proof. “=": Note that »'(X) is connected by Lemma 2.3. If X = V, then U = Ey; and in
this case (U, ¢) is a directed bond of Type II. This belongs to case (1). If X # V, then X' (X°)
is non-empty and is decomposed into disjoint components. When all components of X'(X¢) are
unbalanced, it follows from Proposition 2.1(c) that (U, ¢) is a directed bond, which is of case (1).

Otherwise, we have X # V, Y (X°) contains at least one balanced component, and X' (X)—Ex
is connected (by Lemma 2.3). (Of course, X' (X¢) may or may not contain any unbalanced
component.) Let 2y be a balanced component of X' (X¢). Suppose the signed subgraph X :=
X (X UV (Xp)) — Ex is balanced. Set X' = V(X), Ex' = Ex,and U’ = [X’, X'“1UEy . Then
(U’, e) is a directed cut, and [X’, X’“] is properly contained in [X, X¢]. This is contrary to the
fact that (U, €) is a minimal directed cut.

“«=": It is clear by definition that a directed bond is a minimal directed cut.

Let (U, ¢) be a directed cut satisfying the condition (2) in Theorem 2.4. We need to show
that (U, ¢) is a minimal directed cut. Suppose (Uy, ¢€) is a directed cut such that Uy C U and
Ex, € Ex, where Uy = [X1, X{]U E,. Since U contains less edges than U, each component
of ) — Uj is a union (as vertex sets) of some components of 2’ — U In particular, X'(X1) — Ex,
is a union of X'(X) — Ey and some other components of X' — U. We first claim that Ex, = E.
Otherwise, if e € Ex — E,, then X(X) — Ex +e is unbalanced; so X' (X) — Ex, is unbalanced,;
this is a contradiction. Clearly, Y'(X1) — Ex, does not contain any unbalanced component of
Y —U.Thus ¥(X;) — Ex, must contain a balanced component Xy of X' — U; consequently, the
unbalanced signed subgraph X (X UV (X)) — Ex is contained in X' (X1) — Ex,;s0 X (X1) — Ex,
is unbalanced; this is a contradiction. [

Note. As an immediate consequence of Theorem 2.4, the underlying cut of any minimal directed
cut, other than a bond, contains at least one bond, but cannot be a disjoint union of bonds.

Theorem 2.5. Every directed cut is a disjoint union of minimal directed cuts.

Proof. Let U = [X, X“] U Ex be a cut with a positive direction ey. If Ex = @, then (U, ey)
is an ordinary cut and the conclusion follows from the fact of ordinary directed cuts. So we
may assume that Ex # () and Y'(X) is unbalanced. Let X, ..., X be connected components
of Y¥(X). Set X; = V(X}), Ex; = E(X;) N Ex, and U; = [X;, XZC] U Ex,. Then (U;, ey)
are directed cuts, and (U, ey) is a disjoint union of (U;, ey). Now we may further assume that
Y (X) is connected. Then X' (X) — Ex is connected by Lemma 2.3. Let E}(l < j<1be
balanced components of X'(X¢) such that X'(X U V(E;)) — Ex are balanced. Set X; = V(Ej’.),
UJ’. = [X;., X];and Y = X¢ — Ulj=1 X}, U’ = [X,Y]U Ex. Then (U, ) is a disjoint union
of directed cuts (U ]’ ey) and (U’, ey). It easy to see that these directed cuts have the form of
minimal directed cuts in Theorem 2.4. [
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3. The circuit and bond spaces

For the convenience of studying spaces associated to signed graphs, we introduce a coupling
function for any two orientations on signed subgraphs of a signed graph Y. Let ¢; (i = 1,2) be
orientations on signed subgraphs X; of Y. The coupling of ¢; is a function [e1, &2] : E — Z,
defined for each edge x = uv by

1 ifx e E)NE)), e1(u, x) =e(u, x),
[e1, e2]l(x) =3 —1 ifx € E(X) NEX)), e1(u, x) # e2(u, x), 3.1
0 otherwise.

It is easy to verify that switching does not change coupling, i.e., [¢], &3] = [e1, &2] for any
switching function v.

Let R be a commutative ring. Let RE be the commutative ring of all functions from E to R.
There is an obvious pairing (,) : R x RF — R, defined by

(fg) =) f()gw).

xeE

Let (X, e) = (V, E, 0, ¢) be an oriented signed graph. Let C be a circuit of ' with a direction
ec. Viewing both (X, ¢) and (C, ec) as oriented signed subgraphs of X, we have a coupling
function [e, ec]. The circuit indicator of C is a function I¢ : E — Z, defined by

2 if x € C and is on the circuit path,
Ic(x) = {1 if x € C and is not on the circuit path, 3.2)
0 otherwise.

The product function [g, ec]Ic determines a vector in the Euclidean space RE of real-valued
functions on E, called the characteristic vector of the directed circuit (C, g¢) for (X, €). The
circuit space (lattice) of (X, ¢) is the real (integral) span of the characteristic vectors of all
directed circuits of (X, ¢), denoted Z (2, ; R) (Z(X, ¢; 7Z)).

Let (U, ey) be a directed cut of X', where U = [X, X°] U Ex with switching function vy,
i.e., the edges of Ex are negative in XVX, the edges of VX (X)— Ex are positive, and e(u, x) = 1
for all x = uv with x € U and u € X. The cut indicator of U is a function Iy : E — Z, defined
by

2 ifx € Ey,
Iy(x)=11 ifxe[X, X], (3.3)
0 otherwise.

The product function [, ey ]Iy determines a vector in RE | called the characteristic vector of
the directed cut (U, ey) for (X, €). The bond space (lattice) of (X, ¢€) is the real (integral) span
of the characteristic vectors of all directed cuts of (), ¢), denoted B(X, ¢; R) (B(X, ¢; Z)). For
a bond B, we define I = %13 if B is of Type II, and Iz = Ig if B is of Type I or Type
II; 7 g is called the reduced indicator of B. For a directed bond (B, ), [, & B]I~ p is called the
reduced characteristic vector of (B, eg). The integral span of reduced characteristic vectors of
all directed bonds is called the reduced bond lattice of (X, ), denoted B(Z , & 7).

Theorem 3.1. (a) The characteristic vector of any directed cut is a sum of characteristic vectors
of some minimal directed cuts.
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() If (U, ey) is a minimal directed cut, but is not a directed bond, then there exist two directed
bonds (B, ey) and (By, ey) such that

1 1
[e, evlly = 5[8, sullp, + 5[8, eullp,. (3.4

Proof. (a) It follows directly from Theorem 2.5.

(b) Let U = [X, X°]U Ex. By Theorem 2.4, let Xy, ..., X be the balanced components of
X(X)(k = 1), and let Zl/, R EI’ be the unbalanced components of X'(X¢). Since switching
does not change characteristic vectors, we may assume that all edges of X'(X) — Ex and J;
(1 < i < k) are positive, the edges of Ex are negative, and ey is the positive direction of U
(i.e., arrows of edges in U point away from X).

Let E~ and E™ be the sets of positive and negative edges of [X, UX;], respectively. Then
By = [X,UX/JUEx UE™ and B = [X,UX/]U Ex U ET are two directed bonds with the
direction gr7. Thus

1 1
[e,euly = 5[8, eyllp, + 5[8, eyllpg,. O

Let (W, ew) be a directed walk with the sequence ugxou1xy ... XxulUn4+1, Where x; = ujl;j41.
We may think of the walk W as a multiset {x¢, x1, ..., x,} of n + 1 elements. The characteristic
vector of (W, ew) is a function fy : E — Z, defined for x € E by

fw@) =Y [e.ewly). (3.5)

YEW, y=x

For any Abelian group A and function g : E — A, we have

(fw,g) =Y fw@g®) =Y [ ewl(x)g(x). (3.6)

xeE xeW

Lemma 3.2. Let U = [X, X°]U Ex be a directed bond of (X, ¢), i.e., (U, ¢) is a directed cut.
Let W be a directed walk with direction ew. If xo, x; € U and W = ugxoQurxy, where Q is
a sub-walk (may be empty) inside X (X) — Ex, then [&, ew](x0) and [e, ew](xx) have opposite
Signs.

Proof. The sub-walk Q = wujxjuzxy---xp—iu; with the orientation ey is a directed walk
whose edges have positive sign. Then ew (u1, x1) # ew (ug, xk—1). Consequently, ew (11, x0) #
ew (uk, xi). Note that e(u1, xo) = e(uk, xx) = 1 for (U, ¢) is a directed cut. By the definition of
coupling, we have [e, ew](x0) # &, ew]l(xr). O

Lemma 3.3. Let (W, ew) be a directed closed positive walk, and let (U, ey) be a directed cut.
Then fw is orthogonal to the cut characteristic vector e, eyly, i.e.,

(fw. e, eully) = Y _lev, ewl(0)Iy (x) = 0. 3.7

xeWw

Proof. Let U = [X, X“]U E. Since switching does not change any circuit, bond, and coupling,
we may assume positive orientation ey and ey = & on E(X) U U. Then o|gx)—gx = 1,
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olgy = —1, and ¢(v, e) = 1 for all incident pairs (v, e) € X x U. For any sub-walk W’ of W,
let
(W) =) [e, ewl(@) Iy (x). (3.8)
xew’

Then I (W) = (fw, [&, ey ]ly). It suffices to show that I (W) = 0.

Case 1: W C X(X°). Since U and X' (X¢) are disjoint, then W N U = . We have I (W) = 0
trivially.

Case2: W C Y(X). Write W = P1Q1P,Q> - PyQp, where P; are sub-walks inside Ey and
Q; are sub-walks inside E(X) — Ex. If W C Ex,thenk = 1, W = Pj,and Q; = @. If
W C E(X) — Ex,thenk = 1, W = Qy, and P; = (. Since all edges of Ex are negative,
the orientation e is alternating on P;; consequently, [, ew] is alternating on P;. Note that by
Lemma 3.2, [, ew] has opposite signs at the end edge of P; and the initial edge of P;; 1, where
Pry1 = Pj. Thus, contracting the edges of all Q;, [¢, ew] is alternating on the closed sub-walk
Wy = P1P>--- Py Itis clear that I (W) = I (Wy) = 0.

Case 3: W N [X, X¢] # @. Start with a vertex ug € V(X¢) and an edge xo € [X, XN C
incident with ug; and travel along the walk W. We break W into some sub-walks W; inside
E(X) U[X, X¢] and sub-walks W/ inside E(X), W = Wi W{Wo W] --- W W,. It is enough to
show that 7 (W;) = 0. Let each W; be written as

Wi =uix; Qo,i P1,i01,iP2,i Q2,i -+ Pn;,i On, iViVis
where x;, y; € [X, X¢], P;; are sub-walks inside Ex, and Q; ; are sub-walks inside E(X)— Ex.
Similarly, [¢, ew] is alternating on P; ;, for the edges of Ex are negative. By Lemma 3.2, [¢, ew]
has opposite signs at the end edge of P;; and the initial edge of Pj;1;, where Py; = xo,
Pp;11,i = Xk, 0 < j < n;. Contracting the edges of all Q; ;, it follows that [, ew] is alternating
along the closed walk Wy ; = u;x; W[/] ; Vi yi, Where

W{],,- =P Py Py i =u1iX1; Uk iXk,i-
If |W,’J’l.| is even, then [¢, ew](x;) = —[¢, ew1(y;). Thus I (W;) equals

I(Wy) = e, eu1(xi) + [ec. e]) +2 Y [e.ewl(x) =0.

XEWZ//.i

If |W(’/ ;| is odd, we must have [&, ew](x;) = [, ew](yi) = —[&, €](x1,;). Set

W{},,- = Uy iX] U2 XD Ui X
We see that I (W;) equals

I(Wy,) = [e, ewl(xi) + [e, ew](yi) + 2le, ewl(x1.) +2 Y [e,ewl(x) =0. O

"
xeWy

Lemma 3.4. Each directed circuit (C, ec) can be written as a directed closed positive walk
(W, ew) with ew = ec. Moreover, fw = l¢, ecllc.

Proof. It is easy to write (C, ec) as a directed closed positive walk (W, ew) with ey = ec. To
see fw = [e, eclic, let C = C1 PC, for example. Since each edge x € C U C, appears once in
W, we have fy(x) = [e, ew](x) = [¢, ec](x); and since each edge x € P appears twice in W,
we have fiy(x) = 2[e, ew](x) = 2[e, ec](x). Hence f = [e,ecllc. O
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Notice that the circuits of X' form a system of circuits of a matroid on the edge set E(X).
Following the standard concept of matroid, we define an independent set of X to be an edge set
whose induced signed graph does not contain any circuit. A basis of ) is a maximal independent
set F, i.e., F is not properly contained in any independent set. When Y is connected and
unbalanced, a basis of X' may not be necessarily connected; however each of its connected
components contains a unique unbalanced cycle; see [10]. Let F be a basis of X'. For each edge
e € F°(:= E — F), there is a unique circuit C, contained in F U {e}. Similarly, for each edge
e € F, there is a unique bond B, contained in F¢ U {e}.

Theorem 3.5. The circuit space Z(X, e,R) and the bond space B(X, e; R) are orthogonal
complements in the Euclidean space RE. Moreover,
dimZ(XY,e;R) = |E| — |V]| + b(X), (3.9
dim B(X, e; R) = |V| —b(X). (3.10)

Proof. The orthogonality of Z(X, ¢; R) and B(X, ¢; R) follows from Lemmas 3.3 and 3.4. To
see the dimension formulas, it is enough to show that

dmZ((Y, &;R) > |E| — |V|+ b(X),

dim B(X, &; R) > |V| — b(X).
Let F be a basis of X, i.e., F is a maximal subset of £ (') such that '(F) does not contain any
circuit. It is known that

[F| = V]| —b(Y), |F| = |E| = [V|+b(Y);

see [10]. For each edge x € F¢, there is a unique circuit Cy € FUx such that C, N F¢ = {x}. For
each x € F, there is a unique bond B, € F¢Ux such that B, N F = {x}. Then the characteristic
vectors of the circuits C, (x € F€) are linearly independent. Similarly, the characteristic
vectors of the bonds By (x € F) are linearly independent. The dimension inequalities follow
immediately. O

4. Flow and tension spaces (lattices)

The incidence matrix of (X, €) is a matrix M (X, ¢) = [m(u, x)] indexed by (u,x) € V X E,
whose (u, x)-entry is defined by

e(u,x) if x is anon-loop at u,
m(u,x) = {2¢e(u,x) if x is a negative loop at u, “.1)
0 otherwise.

We denote by RowM (X, ¢; R) and Row M (Y, ¢; Z) the real and integral spans of the row
vectors of M(X, ¢), respectively. Let End(x) denote the multi-set of end vertices of an edge
x. Then m(u, x) can be written as

mu.x)= Y &(x). (4.2)

veEnd(x),v=u

Lemma 4.1. Let v be a switching function on the vertex set V of (X, €). Then

M5, ") = D"M(Z, ¢),
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where DY is a diagonal matrix indexed by V x V, whose diagonal entries are v(u), u € V.
Proof. It follows from &"(u, x) = v(u)e(u, x). O

A function f : E(X) — A is said to be conservative at a vertex u if

D mu.x)f(x) =) m@u,x)f(x) =0, (4.3)

xeEy, xeE

where E, is the set of all edges incident with u, and A is an Abelian group. If f is conservative
at every vertex of X', we call f a flow of (X, &) with values in A. The zero function f = 0
is called the zero flow (or trivial flow). Flows with values in Z (R) are called integral (real)
flows. We denote by F (Y, e; A) the Abelian group of all flows of (X, &) with values in A, i.e.,
F(X,e;A) .= KerM(X, e; A). We are interested in the flow space F (X, ¢; R) and the flow
lattice F(X, ¢; 7).

Lemma 4.2. The characteristic vector fw of any directed closed positive walk (W, ew) is an
integral flow of (X, €).

Proof. Write W = upxou1xy ... xpuu41; fixavertex u € Viyandletuy,,, up,, ..., u,, denote the
vertex u appeared in the sequence of W. Since ew (uy;, Xn;—1) + ew (Uy;, Xn;) = 0, we have

Y mu,x) fw(x) = Y mu, x)[e, ewl(x) [By (4.2)]

xeE xeW

=Y ) ewxleewlk)

xeW veEnd(x),v=u

=) D> ww
xeW veEnd(x),v=u

k

[8W(un,'7 Xni,]) + SW(Mni, xn,')] =0.
1

1

Hence fy is an integral flow of (X, ¢). O

Lemmad.3. Z(X,e,7) C F(X, &, 7)
Proof. It follows from Lemmas 3.4 and 4.2. O

A tension of (X, ¢) with values in an Abelian group A is a function g : E — A such that for
any directed circuit (C, ec),

(le, ecllc, 8) = Y _[e, ecllc(x)g(x) = 0. (4.4)
xeC

We denote by T (X, ; A) the Abelian group of all tensions of (X, ¢) with values in A. We are
interested in the tension space T (X, ¢; R) and the tension lattice T (X, ¢; 7).

Lemmad.4. B(X,&;R)=T(X, &; R)

Proof. The tension space 7(X,e;R) and the bond space B(JX,e;R) are orthogonal
complements of Z(Y,e;R) in RE() by definition and by Theorem 3.5. So they are the
same. [J
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Lemma 4.5. (a) Let (B, €p) be a directed bond with B = [X, X°1U Ex, and let vx be the bond
switching function. Then

e, e5llp =y mX
ueX

where m,~ is the row vector of MYX (X, ¢) indexed by a vertex u.
(b) The row vector m, of M(X, ¢€) indexed by a vertex u is a linear combination of characteristic
vectors of some directed bonds with coefficients +1, £2.

Proof. (a) Notice that 8 X (u, ) = 1 for all incident pairs (u, ¢) withu € X and e € B.
Case 1: The bond B is of Type II, ie., B = [X,X°] U Ex with X = V. For each edge
e = uv € Ey, its two vertices u, v must belong to X. Then
LHS = 2[e, egl(e) =2[e" EZ,X
=26"(u,e) = Y m)¥ =RHS.
weX
For any edge x = uv ¢ Eyx, the LHS is obviously zero, while the RHS is also zero.
Case 2: The bond B is of Type I or Type III. For any edge e = uv € [X, X¢], one of the vertices
u, v belongs to X, say u € X. Then
LHS = [g, egl(e) = [¢"¥, eB
e (u,e) = Y myY = RHS.
weX
For an edge e = uv € EY, if e is a loop, then u = v, and
LHS = 2[e, e5l(e) = 2[e"¥, 5" 1(e)
= 2e"%(u,e) = Z m.X, = RHS;
weX
If e = uv is not a loop, then u # v, and
LHS = 2[¢, e5](e) = 2[e", £ I(e)
=" (u.e) + £ (v,e) = Y m¥ =RHS.
weX

For edges e ¢ B, the LHS is zero. If e € E(X¢), the right-hand side is also obviously zero as the
end vertices of e cannotbe in X. If e € E(X) — Ex, then e = uv is a positive edge and u, v € X;
clearly, "X (u, e) + €"X (v, ¢) = 0; so the RHS is zero.

(b) Let the components of X' (V — u) be partitioned into balanced components ;, Zj’., and
unbalanced components %', such that %; U [{u}, V(X})] are balanced, and Z’]’. U [{u}, V(E]/.)]
are unbalanced. Let v be a switching function such that the edges in X; U [{«}, V(X;)] and E}
are all positive; the switching function v can be made to only switch vertices inside J; and EJ/..
Then the edge sets

=V, B =V w].  Bo= [{u}, U vw@} UE,
k

are bonds of X'V, where E, is the set of negative edges in X" ({u} u Uj V(Z})).
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Let ¢, e;, and g9 be positive directions on the bonds B;, B}, and By, respectively,
ie., & (u;,e)) =1foru; € V(X;) and e; € B;, 8}(14;», e;.) =1 for u; € V(ZJ’.) and e;. € B}, and
eo(u, e9) = 1foreg € By. Let0 <i <[,0<j <m,and 0 < k < n. Notice that the row vector
m,, of M equals the row vector m;, of M" as the vertex u is not switched by v.

Case 1: n # 0. We then have
my = e, eollgy — ) [e", eilly — ) [e" e
i J

Case 2: n = 0 and m # 1, or at least one negative loop exists at u. Then

my, = 2", eollp, — Y _[e", &i1lp, — Z[s £jllp.
i

Case 3: n = 0, m = 1, and there is no negative loop at u. Then

my, =[¢", ep+1lps + 6", e5-1g- — ) [", &illp,

where B is set of positive edges in X[ and ep+ is the positive direction on BT, and B~ is the
set negative edges in Y| and ¢ - is the positive directionon B~. [

Theorem 4.6. B(}, ¢;Z) = RowM(}, ¢; 7).
Proof. It follows from Lemma 4.5. O

Theorem 4.7. The vector spaces F(X, &;R) and T (X, &; R) are orthogonal complements in
RE: and F(X,&:R) = Z(X, ; R).

Proof. A flow f is equivalent to M(X,e)f = 0. So F(X,&;R) = KerM(Y, ¢; R). Since
KerM(XY, e; R) is the orthogonal complement of RowM (X, ¢; R) in RE, it follows that
KerM(XY,e;R)=27Z(XY,e;R). O

Recall that when Y’ is connected and unbalanced, a basis of X' is not necessarily connected;
however, each of its connected components contains a unique unbalanced cycle; see [10]. The
following lemma shows when a connected basis exists and what it looks like.

Lemma 4.8. Let X' be connected and unbalanced. Then there exists a connected basis for Y.
Furthermore, let F be a connected basis of V.

(a) If e € F° and the unique circuit C, of F U {e} is of Type Ill, then the edge e is not on the
circuit path of Ce.

(b) If e € F and the unique bond B, of F¢ U {e} is of Type IlI, then the edge e is not in the bond
core of B,.

Proof. The existence of bases for X is obvious. Let F be a basis of Y. If F is disconnected, there
is an edge e between two components of F. Then the unique circuit C, in F U {e} must be of
Type III. Remove an edge from C, that is not on the circuit path; a basis of X' is obtained with a
smaller number of components. Continue this procedure; a connected basis is finally constructed.

(a) Suppose there is an edge e € F° such that the unique circuit C, of F U {e} is of Type III,
and e is on the circuit path. Then F contains two vertex disjoint unbalanced cycles. Since F is
connected, there is a path between the two unbalanced cycles to form a circuit of Type IIl in F.
This is a contradiction.
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(b) Similarly, suppose there is an edge e € F such that the unique bond B, of F¢Ue is of Type
II1, and e is in the bond core Ex. Let B, = [X, X“]U Ex. Then the component of F that contains
the edge e is unbalanced, and must be contained in X'(X). Since F is connected, it follows that
F is contained in 2'(X); so X = V. This is contrary to the assumption that B, is a bond of Type
. O

Let F be a basis of X. If a flow is zero on F¢, then the flow is the zero flow. Analogously,
if a tension is zero on F, then the tension is the zero tension. Whenever X is given a basis, the
explicit descriptions for flows and tensions are given by the following theorem, which is well
known for graphs; see [3].

Theorem 4.9. Let F be a basis of (X, €). For each edge e € E(X), let ¢, denote a direction of
the unique circuit C, if e € F€, and denote a direction of the unique bond B, if e € F. Then for
any flow f and tension g of (X, ¢),

f=y ed@/© 8;](?{ e, eellc,, “5)
ecF¢
[e, ec](e)g(e)
=) 20N (e, el 4.6
&ZF In.(©) [, g.11B, (4.6)

In particular, if each component of F is a basis of a component of X, then

=Y le.ede)f(e) e ell,. @7
ecF¢

g = le.ele)g(e)[e. eclp,. 4.8)
ecF

where I, is the reduced indicator of B,.

Proof. Both sides of (4.5) are flows, and they agree on the set F¢. So they agree on the whole
set E(X)). Similarly, both sides of (4.6) are tensions, and they agree on the set F. So they agree
on the whole set E(X)).

By Parts (b) and (c) of Lemma 4.8, we have Ic,(e) = 1 and Ip,(¢) = 1 in (4.5) and (4.6),
respectively. So (4.7) and (4.8) follow immediately. [

Corollary 4.10. Z(X, e;Z) = F(X, &; Z) and B(Z, &, 2)=T((X, ¢e; 7).

Proof. By Lemma 4.3, we only need to show that F (X, ¢; Z) € Z(X, ¢; Z). This is readily
shown, for every integral flow is an integral linear combination of circuit characteristic vectors,
by (4.7).

Similarly, (4.8) shows that T (X, e; Z) < E(Z’, &; 7). Since B(X,e;R) = T(X, ¢;R) by
Lemmad4.4and T (X, e;Z) =T (X, e; R) N ZE, we see that E(E, g Z) CT(X,e;7). O

5. Relation between colorings and tensions

Let A be an Abelian group. A coloring (or potential) of the signed graph X' with a color set
A is afunction f : V — A. A coloring f is said to be proper if

f) #o(e)f(u) (5.1)
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for any edge x = uv with end vertices u and v. We denote by K (X', A) the set of all colorings
of X with the color set A, and by K,,(2', A) the set of all proper colorings. There is a difference
operator 8 : AV — AE defined for functions f € A by

B )x)=ceu,x)f(w) +e,x)f(v), x=uv. 5.2)

The following Theorem 5.1 states the relation between colorings and tensions of signed graphs,
similar to that of ordinary graphs [3].

Theorem 5.1. Let R be a commutative ring with the unity 1 and the element 2 invertible. Then
8§ : RV — T(X,&; R) is an R-module epimorphism with Ker § ~ RV,

Proof. Let f € RV . We first show that 8 is a tension. It is enough to show that ( fy, 8f) = 0 for
any directed closed positive walk (W, ew). Let W = ugxou1x1 ... upxnun+1, where u, 1 = uo,
Xp41 = X0, and ew (u;, x;—1) + ew (u;, x;) = 0. Then

(w.df) = D [e ewl @GN = Y e ewl () (0f) (i)

xeW i=0

= > e, ewl(x) [eui, xi) f (i) + it x0) f wig1)]
i=0

n

= [ew i, xi) f () + ew i1, x) f (uis1)]

i=0
n n+1

=Y ewui. xi) f i)+ ew(ui xio1) f(u) = 0.
i=0 i=1

Next we show that § is surjective. Let g be a tension of (X, £). We construct a potential f
such that §f = g. Fix a vertex ug and assume that f(ug) is given. We define f at an arbitrary
vertex u as follows: Take a walk W from ug to u; write W = wugxou1X1 ... UnXmm+1, Where
Um+1 = U, X; = u;u;4+1; and choose a direction ey, i.e., ew (u;, x;—1) + ew (u;, x;) = 0. To have
8f = g, whenever f(u;) is given, the value f(u;+1) must be given by

Of)(xi) = eui, x;) f (i) + i1, xi) f(uip1) = g(x;).
Since e(u;, x;)e(ui+1, xi) = —o(x;), we obtain the recurrence relation
f@iv1) = o) fi) +eitr, xi)gx), 0=<i=<m. (5.3)

Since (W, ew) is directed, we have

k

[[oGi) = —ewuisr, x)ew o, x0), 0 <k <m.
i=0

The recurrence relation (5.3) implies that

S Wms1)

fuo) [Tot+ ) ewiv, xdg@) [ o))

i=0 i=0 Jj=i+1

o (W) |:f(uo) + Y eip x)gta) [ ] a(x,»)}
i=0 j=0
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i=0

= o(W) | f(uo) — ew (uo, x0) ZE(’JHLxi)8W(ui+lvxi)g(xi):| :

Thus, whenever f(ug) is given, the value f(u) = f(u4;,+1) must be defined by

flums1) = (W) | f(uo) — ew(uo, x0) Y e, 8W](xi)g(xi):| . 54

i=0

We are left to show that f is well defined. It suffices to show that, when W is a closed walk, we
should have

S ug) = o (W) |:f(uo) — ew (uo, xo0) Z[& Ew](Xi)g(xz')} . (5.5

i=0
If the closed walk W is positive, i.e, 0 (W) = 1, then Y ;. j[e, ew](xi)g(x;) = 0, for g is a
tension. The identity (5.5) holds automatically.

Case 1: The component 3 that contains uq is balanced. Since every closed walk of X has
positive sign, the identity (5.5) holds for every closed walk with direction. Hence the value of
f at a chosen base vertex up can be arbitrarily assigned, and the values at other vertices are
uniquely determined.

Case 2: The component X that contains u is unbalanced. Let the closed walk W have negative
sign, i.e., 0 (W) = ]_[;":1 o(x;) = —1, um+1 = ug. Then (5.4) implies

Fluo) = flumsr) = m 3 Te. ewl(xi)g (xi). (5.6)
i=0

For each vertex ug € V(2yp), we define f (1) by (5.6) with any directed closed walk W initiating
at ug with negative sign. We need to show that f is well defined at uy.

Let W’ be another closed walk with negative sign, having a direction ey~ initiating at ug
and the vertex-edge sequence voyov1Y] --.VUnYnUnt+1, Where v,41 = vo = wug. Let fiy be
defined by (5.4) with the directed closed walks W and W', respectively. It suffices to show that
Jw o) = fw(vo), where

fwr@0) = figr (vns1) = M 3 leew 1008 (0.
i=0

Let us write ey (vo, Y0) = Oew (Um+1, Xm), where 6 = £1. Then
ew (Um+1, Xm) = Oew (vo, yo) = —(—bew)(vo, yo)-
Since both W and W’ are negative closed walks, we have
ew (1o, x0) = ew (Um+1, Xm), ew(Vo, Y0) = €w’ (Vn+1 Yn)-

It follows that ey’ (vy41, yu) = Oew(uo, x0), i.e., (—0ew)(Wny1, Yu) = —&ew (1o, Xp). This
means that the concatenation

(WW' eww) = (W, ew) (W', —Bew)
is a directed closed positive walk, whose vertex-edge sequence is

UQXOUTX] * * * U X U1 (VO) YOV1 Y1 * * - UnYnUn+1,
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and whose direction ey y is defined by

ew(u, x) ifx e W,
sww U, x) = —0ew (u,x) ifxe W,
0 otherwise.

Note that ey (v, Yo) = Oew (1o, xo). We thus have

ew (10, x0) [ -
fw (o) = fwr(wo) = =220 (Dl ewl(xi)g (i) = 6 ) _le w1780y
i=0 j=0
ew (uo, Xo)
== Y [eewwl(x)gk)
xeWWwW’
- M(fwwr,g) —0. (ByLemma 4.2)
Finally, for f € RV, if 8f = 0, then f(u) = f(v) for positive edges x = uv, and
f() = — f(v) for negative edges x = uv. We see that f must be constant on each balanced

component of X, and must be zero on each unbalanced component. Hence Ker 8 ~ R” C

Corollary 5.2. Let R be a commutative ring with the unity 1 and the element 2 invertible. Then
RV ~ RVC) & T(X, & R).
In particular, if q is an odd integer, then

(Z)q2)" P = (Z/q7)" > & T (5, ¢, Z/q7T).
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